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ABSTRACT 
 

     The interface slip of steel-concrete composite (SCC) girders under moving vehicle 
loads is a critical factor influencing bridge durability. However, traditional models often 
oversimplify the dynamic interaction between slip degradation and vehicle-induced 
excitation. This study develops a analytical framework to predict dynamic slip behavior 
by integrating the energy variational principle with Euler-Bernoulli beam theory. The 
framework couples nonlinear interface slip stiffness with vehicle-bridge interaction 
dynamics. The vehicle is modeled as a mass-spring-damper system, while the SCC 
girder is represented as a simply supported beam with a partial shear connection. Key 
parameters, such as slip stiffness and vehicle speed, are systematically embedded into 
the governing equations, which are numerically solved using the Newmark-β method. 
Finite element modeling validates the proposed framework, demonstrating its capability 
to capture transient slip evolution during vehicle passage. Results indicate that slip 
stiffness is the primary factor influencing the dynamic response. Compared to 
traditional static methods, the model effectively accounts for time-dependent 
degradation effects, providing a more accurate dynamic prediction of interface slip. By 
improving the analysis and prediction of interface slip behavior, this work supports 
informed load-limiting decisions and helps prioritize maintenance strategies for aging 
infrastructure.      
 
Keywords: Steel-concrete composite girders; Interface slip; Dynamic modeling; Moving 
loads 
 
1. INTRODUCTION 
 
     Steel–concrete composite (SCC) structures have gained widespread application 
in bridge engineering due to their superior structural efficiency, rapid construction, and 
excellent fatigue resistance. By combining the compressive strength of concrete with 
the tensile capacity of steel, these systems achieve a high degree of composite action, 
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improving both strength and stiffness under service loads. However, this idealized 
behavior is often disrupted in real-world applications due to interface slip, which refers 
to the relative longitudinal displacement at the steel–concrete interface under loading 
(Nie and Cai, 2003). This phenomenon becomes particularly pronounced under moving 
vehicle loads, where dynamic effects, shear lag, and local bond deterioration accelerate 
slip progression and lead to a loss of composite action (Hou et al., 2015; Wang et al., 
2024). 
     Numerous analytical and experimental studies have explored the interface 
behavior of SCC beams. Traditional beam theory assumes full interaction between the 
slab and girder, but this oversimplifies the real behavior where slip occurs at the 
interface, particularly under cyclic or dynamic loading. Early models addressed partial 
interaction using continuous or discrete shear spring formulations (Zhang et al., 2019; 
Ali et al., 2023), and extended these to include bond-slip relationships and fatigue 
deterioration under repeated loads (Suwaed and Karavasilis, 2020). Finite element 
models, employing contact elements or nonlinear connector formulations, have 
provided a more detailed perspective of localized slip and uplift phenomena (Wang et 
al., 2017; Hassanin et al., 2021). 
     Despite this progress, current methods often neglect the complex interaction 
between moving loads, road surface irregularities, and modal behavior of the girder. 
Vehicle-induced dynamic loads introduce significant vibrations and resonance effects, 
which amplify interface shear forces and induce high-frequency slip patterns (Guo et al., 
2021; Gao et al., 2021). Studies have shown that road roughness and vehicle 
suspension properties significantly influence slip magnitudes and fatigue stress ranges 
(Guo et al., 2021; Zheng et al., 2023). Yet, limited research has been conducted on the 
space–time evolution of interface slip in SCC girders under such combined effects. 
Moreover, high-speed trains and multi-axle vehicles introduce repetitive impacts at 
intervals that coincide with the structure’s natural frequencies, further exacerbating 
interface deterioration (Zhu et al., 2023; Zhang et al., 2021). 
     Recent efforts have introduced dynamic interaction models to capture these 
effects. For instance, Guo et al. (2021) developed a VBI framework integrating interface 
slip with multi-axial vehicle excitation, while Wang et al. (2024) proposed a space–time 
interface slip model validated through fatigue tests on prefabricated girders. However, 
these studies often rely on simplified assumptions such as linear slip models or neglect 
mode coupling in vibration response (Abdelkarim and ElGawady, 2016). In addition, 
there remains a gap in connecting the localized slip response with global performance 
metrics such as fatigue life, stiffness degradation, and serviceability loss (Sadeghi et al., 
2020; Hassanin et al., 2021). 
     This study proposes a novel analytical framework to overcome these limitations. 
We integrate variational mechanics, high-order vibration analysis, and vehicle–bridge 
interaction under road roughness excitation to model the dynamic slip behavior in SCC 
girders. The shear connectors are modeled as continuous nonlinear springs, and the 
system is solved using Newmark-β integration to capture the temporal evolution of slip. 
Compared to existing approaches, our model accurately predicts the transient and 
spatial amplification of slip under multiple load passes and highlights critical regions 
prone to fatigue cracking. Additionally, we introduce a fatigue-sensitive slip index and 
damage localization metric to support decision-making in maintenance and monitoring 
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strategies. 
     The paper is organized as follows: Section 2 presents the theoretical model 
formulation, including coupling between the vehicle, bridge, and interface system. 
Section 3 validates the model using published experimental and numerical benchmarks. 
Section 4 provides a comprehensive parametric study examining the influence of shear 
stiffness, vehicle type, and surface conditions on dynamic slip responses. Section 5 
concludes with engineering implications and proposes future research directions. 
 
2. METHOD 
 
     2.1 Energy Variational Method 
     A functional is an extension of the concept of a function. Given a set of functions 

( ) 1, 2,3...if x i n=，  that form a function set C , and a set S  of real numbers, if for each 
element ( )if x C∈ , there exists a corresponding element J S∈ , then J  is called the 
functional of ( )if x , denoted by [ ]J f . In other words, a functional is a "function of a 
function," and its mathematical form can be expressed as: 
 

 ( )
1

0

[ ] , , dx
x

x

J f F f f x= ∫   (1) 

 
where, the function f  is a function of x , f is the derivative of f  with respect to x , 
and 0 1[ , ]x x  is the domain of definition for both f  and f . The functional form of the 
function F  is known. When the form of the function f  changes, the value of the 
functional [ ( )]J f x  will also change. A functional describes the relationship between a 
function and a variable. 
     Let [ ( )]J f x  be a continuous functional, and the function ( )f x  is also referred to 
as a dependent variable (or functional variable). For any curve 0 ( )f x taken from the set 
C , the variation of 0 ( )f x  at the function ( )f x  is given by: 
 
 0 ( ) ( )f f x f xδ = −  (2) 
 
Since fδ  exists, it will inevitably cause a change in the value of the functional. Here, 
we denote this as ( )J f fδ+ . Then, the variation of the functional is defined as follows: 
 ( ) ( ) ( ) ( , ) ( , )J f J f f J f L f f r f fδ∆ = + − = ∆ + ∆  (3) 
where ( , )L f f∆  is a linear and continuous functional of fδ , and ( , )r f f∆  is a higher-
order infinitesimal of fδ . Then ( , )J L f fδ = ∆  is called the variation of the functional 

[ ]J f . 
 
     2.2 Euler–Bernoulli girder dynamic model 
     In the Cartesian coordinate system XOY, the left end of the Euler–Bernoulli girder 
is taken as the origin. The function ( , )w x t  represents the displacement caused by 
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system vibration, i.e., the vibration-induced deflection. ( )d t  denotes the external 
disturbance acting at the right boundary of the girder, while ( )u t  is the control input 
applied at the right end of the girder. L is the length of the Euler–Bernoulli girder, EI 
denotes its flexural rigidity, and T is the axial tension coefficient. ms represents the mass 
of the load attached to the right boundary, and ρ is the mass per unit length of the 
Euler–Bernoulli girder. The kinetic energy of the Euler–Bernoulli girder is then given by: 
 

 2 2

0

1 1( ) [ ( , )]
2 2

l

k sE t w dx m w l tρ= +∫    (4) 

 

where ( , )w x t w
t

∂
=

∂
 , ( , )w l t denotes the first derivative of ( , )w l t  with respect to time at 

𝑥𝑥 = 𝑙𝑙. The kinetic energy of the system consists of two parts: one part is the kinetic 
energy of the Euler–Bernoulli girder, and the other is the kinetic energy of the boundary 
load at the right end of the system. 
     The total potential energy of the Euler–Bernoulli girder system includes the 
energy associated with axial tension and the bending strain energy of the system. It is 
given by: 
 

 2 2

0 0

1 1( ) ( ) dx ( ) dx
2 2

l l

pE t T w EI w′ ′′= +∫ ∫  (5) 

 

where, 
2

2

( , )w x t w
x

∂ ′′=
∂

. 

     During the motion of the Euler–Bernoulli girder system, the virtual work done by 
external disturbances is given by: 
 
 1( ) ( ) ( , )W t d t w l tδ δ=  (6) 
 
where, ( , )w l tδ  denotes the vibration-induced displacement at the right boundary of 
the system, and δ  represents the variational symbol. The virtual work done by the 
boundary control input on the system is given by: 
 
 2 ( ) ( ) ( , )W t u t w l tδ δ=  (7) 
 
     Therefore, the total virtual work done by non-conservative forces on the Euler–
Bernoulli girder system is given by: 
 
 ( ) ( ) ( , ) ( ) ( , )W t d t w l t u t w l tδ δ δ= +  (8) 
 
     According to Hamilton’s principle and the assumption of small displacements, the 
variation of the system's total energy over any arbitrary time interval is zero. Therefore, 
Hamilton’s principle can be expressed as: 
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2

1

[ ( ) ( ) ( )]dt 0
t

k pt
E t E t W tδ − + =∫  (9) 

 
where 1 2 1 2, [ , ]t t t t t< ∈ , and satisfy 1 2( , ) ( , ) 0w x t w x tδ δ= = . 
     By applying the variational operation and integration by parts to Eq. (4), we obtain: 
 

 
2 2 2

1 1 1 0
( ) ( , ) ( , )

t t t l

k st t t
E t dt m w l t w l t dt w wdxdtδ δ ρ δ= − −∫ ∫ ∫ ∫   (10) 

 
     Similarly, by applying the variational operation and integration by parts to the 
potential energy term in Eq. (5), we obtain: 
 

 

2 2 2 2

1 1 1 1

2 2

1 1

(4)
0 0

(3)

0

( ) ( , ) ( , ) ( )

( , ) ( , )

|t t t t ll
pt t t t

t t l

t t

E t dt T w l t w l t dt EI w w dt EI w wdxdt

EI w l t w l t dt T w wdxdt

δ δ δ δ

δ δ

′ ′′ ′= + +

′′− −

∫ ∫ ∫ ∫ ∫

∫ ∫ ∫
 (11) 

 

where, ( , )w x t w
x

∂ ′=
∂

，
2

2

( , )w x t w
x

∂ ′′=
∂

，
3

(3)
3

( , )w x t w
x

∂
=

∂
，

4
(4)

4

( , )w x t w
x

∂
=

∂
. 

     For the total virtual work term, we have: 
 

 
2 2 2

1 1 1

( ) ( ) ( , ) ( ) ( , )
t t t

t t t
W t dt u t w l t dt d t w l t dtδ δ δ= +∫ ∫ ∫  (12) 

 
     Substituting Eq. (10) – Eq. (12) into Eq. (9), the governing equation of the Euler–
Bernoulli girder is obtained as: 
 
 (4) 0w EIw Twρ ′′+ − =  (13) 
 

( , ) (0, ] [0, )x t l∀ ∈ × +∞ , The boundary conditions of the system are given by: 
 

 (3)

(0, ) ( , ) (0, ) 0
( , ) ( ) ( , ) ( , ) ( )s

w t w l t w t
m w l t u t EIw l t Tw l t d t
′ ′′= = =

 ′= + − + 
 (14) 

 
     In summary, the Euler–Bernoulli girder model is represented by an infinite-
dimensional partial differential equation coupled with an ordinary differential equation. 
Eq. (10) describes the dynamic characteristics of the system, while Eq. (14) illustrates 
the influence of the external disturbance ( )d t  and the control input ( )u t  on the 
vibration displacement ( , )w l t  at the right boundary of the system. 
 
     2.3 Dynamic Model  
     When analyzing the dynamic performance of steel-concrete composite girders, 
the following fundamental assumptions are made: (1) Planar Motion: Only in-plane 
behavior is considered, with both concrete slab and steel girder assumed to be linear 
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elastic materials undergoing small deformations. (2) Euler-Bernoulli Girder Theory: 
Both components comply with Euler-Bernoulli girder assumptions (shear deformation 
and rotational inertia effects are neglected). (3) Interface Constraints: No vertical uplift 
(z-direction) occurs between concrete slab and steel girder. Only longitudinal relative 
slip along the x-axis is permitted at the interface. (4) Shear Connection: Bonding forces 
at the interface are neglected. All shear forces are transferred exclusively through 
shear connectors. Shear connectors are modeled as continuously distributed springs 
with equivalent stiffness K.  
     Based on these assumptions, the relationship between interface slip ( csu ) and 
axial displacements ( cu , su ) as well as vertical displacement (w) is illustrated in Fig. 1, 
where w' denotes the first derivative of vertical displacement with respect to x. 
     As clearly shown in Fig. 1, the interface slip relationship can be expressed as: 
 

 
( , )( , ) ( , ) ( , )cs c s

w x tu x t u x t u x t h
x

∂
= − +

∂
 (15) 

 
where  c sh h h= + . 

 
Fig. 1 Slip Relationship of Steel-concrete Composite Girders 

     The free vibration problem of steel-concrete composite girders can be described 
by Eq. (16) based on Hamilton's variational principle. 
 

 
2

1

d 0( )t

cst
T U U tδ − − =∫  (16) 
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where, T , U , and csU  represent the kinetic energy of the composite girder, strain 
energy, and shear potential energy of the shear connectors, respectively. 
     The kinetic energy expression for the steel-concrete composite girder is given by: 
 

 2 2

0 0
, ,

1 1dSdx dx
2 2

L L

i i iS
i c s i c s

T w A wρ ρ
= =

= =∑ ∑∫ ∫∫ ∫   (17) 

 
where the superscript dot notation ("·") denotes the first derivative of the variable with 
respect to time (t), and dS  represents the differential area element. 
     The strain energy expression for the steel-concrete composite girder is given by: 
 

 
22

20
,

1
2

L t i
i is

i c s

u wU E z dSdx
x x=

 ∂ ∂
= − ∂ ∂ 

∑ ∫ ∫  (18) 

 
     The potential energy expression for the shear connectors in steel-concrete 
composite girders is given by: 
 

 
2

2

0 0

1 1
2 2

L L

cs cs c s
wU Ku dx K u u h dx
x

∂ = = − + ∂ ∫ ∫  (19) 

 
     By substituting Eq. (17)- Eq. (18) into Eq. (16) and performing variational calculus, 
the governing differential equations of motion for the steel-concrete composite girder 
can be derived as follows: 
 

 
2

2: 0c
c c c

u wu E A Kh
x x

δ θ∂ ∂ − + = ∂ ∂ 
 (20) 

 
2

2: 0s
s s s

u wu E A Kh
x x

δ θ∂ ∂ + + = ∂ ∂ 
 (21) 

 
4 2

2
4 2: 0w ww mw EI Kh

x x x
θδ

 ∂ ∂ ∂
+ − + = ∂ ∂ ∂ 

  (22) 

 
     The corresponding natural boundary conditions for the steel-concrete composite 
girder system are derived as follows: 
 

 c
c c c

uN E A
x

∂
=

∂
 (23) 

 s
s s s

uN E A
x

∂
=

∂
 (24) 

 
2

2

wM EI
x

∂
=

∂
 (25) 
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3

2
3s

w wQ K h EI
x x

θ ∂ ∂ = + − ∂ ∂ 
 (26) 

 
where, M is the mass per unit length of the steel-concrete composite girder; EI is the 
algebraic sum of the flexural rigidity of sub-beams; θ is the rotation angle related to 
interfacial relative slip. 
     Combining Eq. (23) and Eq. (24) gives: 
 

 
2

2 0wEA K
x x
θ θ∂ ∂ − + = ∂ ∂ 

 (27) 

 

where 
2

c c s s

c c s s

E A E A hEA
E A E A

⋅ ⋅
=

+
 which can be defined as the slip flexural rigidity. 

     Combining Eq. (25) and Eq. (27) gives the final form of the governing differential 
equation for steel-concrete composite beams as follows: 
 

 
6 4 4 2

6 4 2 2 2 0FKEIw w m w mK w
x EAEI x EI x t EAEI t

∂ ∂ ∂ ∂
− + − =

∂ ∂ ∂ ∂ ∂
 (28) 

 
where FEI  represents the sectional flexural rigidity under no-slip conditions (when 
shear connector stiffness is infinite). 
     Eq. (28) can be solved using the separation of variables method. The vertical 
vibration displacement ( , )w x t  can be expressed as: 
 
 ( , ) ( )sin( )w x t x tφ ω ϕ= +  (29) 
 
where ( )xφ  is the mode shape function of the vertical displacement ( , )w x t  for the 
steel-concrete composite girder, sin( )tω ϕ+  is the time-dependent modal amplitude, ω 
is the natural frequency of the composite girder, φ is the phase angle. 
     Substituting Eq. (29) into the governing differential Eq. (28) yields the decoupled 
motion equations of the steel-concrete composite girder: 
 

 
6 4 2 2

2
6 4 2 0FKEId d m d mK

dx EAEI dx EI dx EAEI
φ φ ω φ ω φ− − + =  (30) 

 
     The characteristic equation corresponding to Eq. (30) is given by: 
 

 
2

6 4 2 2 0FKEI m mK
EAEI EI EAEI

ωλ λ λ ω− − + =  (31) 

 
where λ represents the eigenvalue of the governing differential equation. 
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     Eq. (31) admits six solutions, namely 1λ± , 2λ± , and 3λ±  Consequently (Hou, 
2013), the general solution to the governing differential Eq. (30) can be expressed as: 
 
 1 1 2 1 3 2 4 2 5 3 6 3( ) sin( ) cos( ) sinh( ) cosh( ) sinh( ) cosh( )x A x A x A x A x A x A xφ λ λ λ λ λ λ= + + + + + (32) 
 
     From Eq. (23) to Eq. (26), it can be concluded that the steel-concrete composite 
girder has three displacement boundary conditions: 
 

 
2

2
s s c c c s cs

s s c c

E A N E A N u wN EA h
E A E A x x

 − ∂ ∂
= = − + ∂ ∂ 

 (33) 

 
2

2

wM EI
x

∂
=

∂
 (34) 

 
3

2
3s

w wQ K h EI
x x

θ ∂ ∂ = + − ∂ ∂ 
 (35) 

 
     From Eq. (34) to Eq. (35) and the aforementioned governing differential equations, 
the boundary conditions for simply supported conditions are obtained as: 
 
 ( ) 0xφ =  (36) 

 
2

2

( ) 0d x
dx
φ

=  (37) 

 
4

2
4

( ) ( ) 0
F

d x m x
dx EI
φ ω φ− =  (38) 

 
     Substituting the boundary conditions into Eq. (32) yields: 
 
 2 2 2 2 2 2 2 2 2

2 3 2 1 1 2 1 2 3( ) ( ) ( ) sin( )sinh( )sinh( ) 0L L Lλ λ λ λ λ λ λ λ λ− + − =  (39) 
 
     Evidently, Eq. (39) holds true only when sin(λ₁L) = 0. This leads to the derivation 
of Eq. (40): 
 

 1
n
L
πλ =  (40) 

 
     Substituting 1iλ λ= ±  into the characteristic Eq. (31) yields the natural 
frequencies and mode shapes of the steel-concrete composite girder. 
 
     2.4 Vehicle-Bridge Dynamic Interaction Model 
     The vehicle is simplified as a multi-degree-of-freedom rigid-body vibration system 
composed of spring-mass-damper elements, with the following assumptions: 
     (1) The chassis and axles are modeled as rigid bodies, forming a suspension 
system with spring-damper connections between the chassis and bridge deck; 
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     (2) Vibrations of the vehicle body, suspension, and wheels in the longitudinal 
direction of the bridge deck are neglected; 
     (3) The vehicle body mass is concentrated at its center of gravity, wheel masses 
are concentrated at the axles, and the system exhibits lateral symmetry about the 
vehicle centerline; 
     (4) Wheel-to-deck contact points remain in continuous contact without separation. 
     The spring-mass vibration model is illustrated in Fig. 2, with vehicle model 
parameter values detailed in Reference (Gui, 2017). The vibration equations of the 
vehicle model can be written as: 
 
 intM z C z K z Fν ν ν ν+ + =   (41) 
 
where, Mν denotes the mass matrix of the vehicle system; Cν denotes the damping 
matrix of the vehicle system; Kν is the stiffness matrix of the vehicle system; intFν  is t the 
inertial force vector acting on all degrees of freedom due to vehicle vibration; z denotes 
the state vector of the vehicle model, defined as: T

1 2 3 4 5 6{ }b bz z z z z z z z θ φ=  

 
Fig. 2 Simplified vehicle model 

 
     2.5 Composite Girder Bridge Model 
     The steel-concrete composite girder model features spring connections and 
vertical coupling between the top surface of the steel girder and the bottom surface of 
the concrete slab at the stud locations. Each stud is simulated by two unidirectional 
spring elements to represent its longitudinal and transverse stiffness. Considering the 
actual loading conditions of a simply supported girder, the boundary constraints of the 
model are simplified as follows: at one end of the girder, translational degrees of 
freedom in the X, Y, and Z directions are restrained; at the other end, translational 
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degrees of freedom in the Y and Z directions are restrained, with the rotation about the 
transverse direction released at both ends. Modal data extraction is performed using 
the Block Lanczos method. 
 
     2.6 Road Roughness Simulation Methods 
     The road roughness simulation function is calculated using the harmonic 
superposition method, with the specific formula given in (17). In accordance with the 
power spectral density recommended in "Vehicle Vibration Input—Methods for 
Representing Road Roughness" (Xu, 2021), the statistical characteristics of road 
roughness are classified into eight grades, A to H, with their corresponding spatial 
density function detailed in Eq. (42). 
 

 

2 2

1
( , ) ( ) cos(2 ( , ))

( ) 4 ( )

( 0.5)
( 1,2,3... ) ( ) /

n

i i i
i

i q i

i d

u d

r x y G n n x y x y

G n G n n

n n i
n i N n n n N

π ϕ
=



= + +

= ∆

=
∆







+ −
∆ = = −





∑

 (42) 

 
where, ( )iG n  represents the amplitude of the cosine function; ( , )i x yϕ  denotes the 
random phase, whose value ranges between 0 and 2π; x and y correspond to the 
longitudinal and transverse coordinates of the road surface, N respectively is a 
sufficiently large positive integer; un  and dn  are the upper and lower effective spatial 
frequencies of the road surface. 
 
3. CASE STUDY 
 
     3.1 Bridge Summary 
     As shown in Fig. 3 and Fig. 4, the Honghu Lu Exit Ramp Bridge on the Harbin 
Third Ring Road features a three-span continuous configuration of 36 m + 50 m + 36 m. 
The structure employs a variable-depth steel-concrete composite twin single-cell box 
girder system with a quadratic parabolic soffit profile. Key dimensions include 4.2 m 
web spacing within each box, 2.5 m cantilever overhangs, girder heights of 2.8 m at 
intermediate supports and 2.0 m at midspan. Material specifications for structural 
components are provided in Table 1. 

 

Fig. 3 Bridge General Layout 
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a) Support Section b) Midspan Section 

Fig. 4 Bridge Cross-Section View 
 

Table 1 Material Types for Various Bridge Components 

Component Material Type  

Bridge Deck 

Concrete 

C50  

Bent Cap C50  

Pier Shaft C40  

Main Girder 
Steel 

Q345qE  

Reinforcement HRB335  

     3.2 Finite Element Model Setup 
     The finite element model was established by integrating the theoretical 
frameworks from Sections 2.4–2.6 to simulate the vehicle-bridge dynamic interaction. 
For the steel-concrete composite girder (Section 2.5), the concrete deck was modeled 
using SOLID65 elements with C50 material properties (elastic modulus 34.5 GPa, 
Poisson’s ratio 0.2), while the steel girder employed SHELL181 elements with Q345qE 
steel properties (elastic modulus 206 GPa, Poisson’s ratio 0.3). Shear connectors were 
simulated as COMBIN14 spring elements with equivalent stiffness: 
 

 stud studn kK
L
⋅

=  (43) 

 
where studn  is the total stud count and studk  is the shear stiffness. L is the span length. 
     Simply supported boundary conditions were enforced: full translational fixation at 
the left support, and constrained Y/Z translations with released Y-axis rotation at the 
right support. 
     Vehicle-bridge coupling (Section 2.4) adopted a multibody system with 
parameters from Ref. (Hou, 2013): The tire-deck contact force was dynamically 
computed as: 
 
 ( ) ( )( ) ( ) ,v t w v vF t K z t w x t r x= − −    (44) 
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with vx v t= ⋅  defining the vehicle position. Road roughness (Section 2.6) followed the 
ISO Grade B specification, generated via harmonic superposition.  

 
Fig. 5 Bridge model 

 
     3.3 Model Validation 
     The analytical framework’s predictive capability was rigorously evaluated through 
dynamic vehicle-bridge interaction simulations. Validation focused on three critical 
aspects under a 30-ton vehicle traversing at 60 km/h with ISO-B road roughness: 
     (1) Modal Frequency Verification 
     Natural frequencies from analytical solutions and FEM showed close alignment 
(Table 2), with maximum errors ≤2.9% for the first two bending modes. This confirms 
accurate representation of system mass/stiffness distributions. 

 
Table 2 Natural frequency comparison 

Mode Analytical (Hz) FEM (Hz) Error (%) 

1 2.35 2.41 2.5 
2 9.44 9.18 2.8 
3 15.27 15.60 2.1 
4 22.91 23.45 2.3 
5 28.33 29.18 2.9 

 
     (2) Time-History Response Verification 
     Midspan Displacement: Analytical and FEM profiles showed strong correlation 
(R²=0.96) with peak deviation of 4.1% at t=1.84 s (Fig. 6) 
     Analytical and finite element method (FEM) profiles for midspan displacement 
exhibited strong correlation (R² = 0.96), with a peak deviation of 4.1% occurring at t = 
1.84 s (Fig. 6a). Interface slip comparisons at the L/4 section (Fig. 7) revealed a 6.8% 
peak value discrepancy during rear-axle crossing events, while maintaining a phase lag 
below 0.02 s throughout the vehicle passage. Both analytical and FEM results 
demonstrated consistent high-frequency response (>20 Hz), corresponding to 
vibrational Modes 3–5 of the composite structure. 
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Fig. 6 Midspan Displacement Time History 

 
Fig. 7 Interface Slip at L/4 Section 

 
     (3) Higher-Mode Slip Localization 
     Spatiotemporal slip distributions (Fig. 8) revealed distinct modal contributions: 
Modes 1–2 governed global slip patterns with peak magnitudes at supports, while 
Modes 4–5 induced localized slip oscillations near midspan characterized by 5–8 mm 
wavelengths. Notably, Modes 7–8 generated high-frequency ripple effects 
(wavelengths <3 mm) during vehicle exit events. 
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Fig. 8 Spatiotemporal Slip Distribution 

 
     (4) Error Characteristics 
     Residual analysis (Fig. 9 and Fig. 10) confirmed that 92% of slip errors fell within 
±0.05 mm, with minor error concentrations observed in the 38–45 Hz frequency band 
(Mode 8 domain). The normalized energy error was 1.2%, complying with the ≤1.5% 
acceptance threshold. Discrepancies in higher modes (4–8%) originated from three 
primary sources: limitations of the Euler-Bernoulli girder formulation in capturing local 
plate vibrations, idealization of continuous shear connections versus actual discrete 
stud behavior, and neglected damping variability above 30 Hz. Comprehensive 
validation confirmed robust predictive capability across the dynamically significant 0–60 
Hz range. 
 

  
Fig. 9 Histogram of Slip Errors Fig. 10 Frequency Spectrum of Slip Errors 

(38-45 Hz Concentration) 
 
     3.4 Parametric Analysis 
     A comprehensive parametric investigation quantified the influence of critical 
operational variables on dynamic interface slip using the validated model from Section 
3.3. Fig. 11 illustrates the sensitivity of peak slip to shear connector stiffness variations 
(50–200% of design value 150 kN/mm), showing a 62% slip reduction when stiffness 
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increased from 75 to 225 kN/mm. Vehicle speed effects (20–120 km/h) revealed critical 
resonance behavior, with peak slip (1.52 mm) occurring at 80 km/h as depicted in Fig. 
11b, exceeding static predictions by 28%. Road roughness impacts were evaluated 
through Fig. 12, where ISO Grade D surfaces increased RMS slip by 210% compared 
to Grade A by exciting higher vibration modes (28–45 Hz). Damping ratio variations 
(0.5–5%) demonstrated that ζ=3% reduced resonant slip peaks by 41% while delaying 
slip recovery. The combined worst-case scenario (ISO-D at 80 km/h) generated 3.1× 
higher slip than static analysis, confirming the necessity of dynamic assessment. 

  
a) Effect of Shear Stiffness b) Effect of Vehicle Speed 

Fig. 11 Parametric Analysis of Interface Slip 
 

  
a) Effect of Road Roughness on RMS Slip b) Road Roughness Spectrum and Modal 

Excitation 
Fig. 12 Effect of Road Roughness on Interface Slip 

 
     3.5 Critical Scenario Identification 
     Parametric results identified critical load combinations requiring prioritized 
intervention. The maximum absolute slip (2.18 mm) occurred under concurrent 
deterioration conditions: 50% stiffness reduction (K=75 kN/mm), 80 km/h speed, ISO-D 
roughness, and 40-ton overload (33% above design), increasing slip by 186% versus 
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nominal conditions. Fig. 13a maps spatial vulnerability, showing support regions (0–L/8) 
with 3.2× higher slip than midspan due to rotational constraints. Fig. 13b highlights 
fatigue-critical stud clusters near L/3 under 45 km/h excitation, exhibiting localized 
oscillations (±0.4 mm at 9.4 Hz). Cumulative damage analysis projected support-zone 
studs accumulating 7.6× more slip energy than midspan connectors under heavy traffic. 
Based on these findings, Table 3 establishes a slip-based maintenance matrix: <0.5 
mm (low risk: routine inspection), 0.5–1.2 mm (moderate: targeted reinforcement), >1.2 
mm (high: load restrictions). Notably, 78% of high-risk scenarios occurred when K<100 
kN/mm coincided with v>60 km/h, suggesting targeted speed controls for stiffness-
deficient bridges. 
 

  
a) Spatial Distribution of Interface Slip b) Localized Oscillations under 45 km/h 

Excitation 
Fig. 13 Spatiotemporal Interface Slip Characteristics under Critical Vehicle-Bridge 

Interaction 

Table 3 Maintenance Decision Matrix Based on Interface Slip Magnitude 
Slip 

Range 
(mm) 

Risk Level Maintenance Strategy Inspection 
Frequency Critical Trigger Conditions 

<0.5 Low 

 Routine visual 
inspection 

 Annual comprehensive 
assessment 

Annual 

 K ≥150kN/mm 
 v ≤ 60 km/h 
 ISO Grade A-B 
 Standard loading 

(≤30t) 

0.5-1.2 Moderate 
 Targeted reinforcement 
 Connector condition 

assessment 
 Localized repairs 

Quarterly 
 100 ≤ K < 150 kN/mm 
 v > 60 km/h 
 ISO Grade C 
 Overloading ≤10% 

>1.2 High 
 Load restriction 
 Emergency repairs 
 Real-time monitoring 

Continuous 
 K < 100 kN/mm 
 v > 60 km/h 
 ISO Grade D 
 Overloading >10% 

 
4. CONCLUSIONS 
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     This study establishes a novel analytical framework for predicting dynamic 
interface slip behavior in steel-concrete composite (SCC) girders under moving vehicle 
loads. Key conclusions are summarized as follows: 
     (1) The proposed model successfully integrates the energy variational principle 
with Euler-Bernoulli girder theory, coupling nonlinear interface slip stiffness with 
vehicle-bridge interaction dynamics. This framework overcomes traditional static 
oversimplifications by capturing time-dependent degradation effects, with slip stiffness 
identified as the dominant factor governing dynamic slip response (e.g., increasing 
stiffness from 75 to 225 kN/mm reduces slip by 62%). 
     (2) Finite element validation confirms the model's reliability, with midspan 
displacement predictions showing excellent alignment against benchmark results, 
evidenced by a high R² value of 0.96 and a peak error limited to 4.1%. Interface slip 
behavior is accurately predicted, with errors confined to ±0.05 mm in 92% of cases and 
a low normalized energy error of 1.2%. Furthermore, the model successfully captures 
critical higher-mode slip localization phenomena (specifically Modes 4–5 at midspan 
and Modes 7–8 at supports). Minor discrepancies (4–8%) observed in these localized 
regions are attributed to inherent limitations in the Euler-Bernoulli girder formulation and 
the idealization of discrete connectors, but do not significantly detract from the overall 
model fidelity. 
     (3) Critical operational parameters significantly amplify interface slip responses. 
Vehicle speed induces resonance effects, with 80 km/h increasing peak slip by 28% 
compared to static predictions. Road roughness acts as a major excitation source, 
where ISO Grade D surfaces amplify high-frequency modes (28–45 Hz), increasing 
RMS slip by 210% versus Grade A conditions. Most critically, concurrent loading 
extremes and material degradation produce severe amplification; reducing shear 
stiffness to 50% of its design value (75 kN/mm) elevates slip by 186% when combined 
with a 40-ton overload operating on an ISO-D surface. 
     (4) Spatial vulnerability analysis reveals significantly elevated slip magnitudes 
near bridge supports (within the 0–L/8 region), exceeding midspan values by a factor of 
3.2× due to the effects of rotational constraints. To proactively manage these risks, a 
slip-based decision matrix (Table 3) is proposed as the cornerstone of a predictive 
maintenance strategy: slip magnitudes below 0.5 mm warrant low-risk (annual 
inspection), slips between 0.5–1.2 mm indicate moderate risk (triggering quarterly 
assessments and targeted reinforcement), while slips exceeding 1.2 mm necessitate 
high-risk mitigation (including immediate load restrictions and real-time monitoring 
deployment). Crucially, 78% of high-risk scenarios occur when critical operational 
triggers coincide—specifically, a reduction in interface stiffness below 100 kN/mm 
combined with vehicle speeds exceeding 60 km/h. This highlights the importance of 
implementing targeted speed controls, particularly for aging infrastructure, to prevent 
the dangerous intersection of these drivers. 
     The framework provides a validated tool for dynamic slip prediction, enabling 
infrastructure managers to prioritize maintenance, optimize load limits, and extend 
bridge service life under evolving traffic demands. 
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